

Certificate of Analysis

2ml Disposable N/A Matrix: Infused Product

PASSED

Sample:KN30713002-001 Harvest/Lot ID: 070723A Batch#: 070723A Batch Date: 07/07/23 Sample Size Received: 15 gram Retail Product Size: 2 gram Ordered : 07/10/23 Sampled : 07/10/23 Completed: 07/14/23

Jul 14, 2023 | Hemp Rolls

Chattanooga, TN, 37432, US

		SAFETY RESUL	TS Heavy M PASS	letals	Microbials PASSED	Action of the second se	Residuals So PASSE	Ivents Fil		er Activity TESTED	Pa	Ige 1 of 5 MISC.
۳« لي	Pote	ency	\sum	7	\geq	A	47	H	111		W	PASSED
E TT	M.	Total THC	87%	F	m		ыв-тнс 667	5%	E		Cannabin	
	E			E	4				E.	3		
	CBDV	CBDA	CBGA	CBG	CBD	тнсу	CBN	D9-ТНС	D8-THC	D10-THC	СВС	тнса
% mg/g LOD	ND ND 0.001	2.6699 26.699 0.001	0.0442 0.442 0.001	ND ND 0.001	0.511 5.11 0.001	0.0458 0.458 0.001	0.664 6.64 0.001	0.1443 1.443 0.001	70.6675 706.675 0.001	ND ND 0.001	1.9634 19.634 0.001	0.0735 0.735 0.001
analyzed by:	%	%	% Weight:	%	%	%	%	%	%	% Extrac	%	%
2657, 2990 Analysis Meth	od : SOP.T.30.	031.TN & SOP.T.40.03	0.2047 1.TN Expanded N	leasurement o	of Uncertainty: Flow	07/13/23 09:36:51	± 0.100, THCa: ±	0.124, TOTAL THO	C ± 0.112. These u	2837	Ý.	d uncertainty express
nalytical Bat	tch : KN003952 sed : E-SHI-008		a coverage facto	r k=2 for a nor	mal distribution.		Reviewed On : 07/ Batch Date : 07/13					
	1123.02; 10042 : 302110210;	22.02; 071023.R02; 07 22/04/01; 220725; 23				350331; 6121219;	600054; IP250.10	00	$\langle \chi$	\mathcal{T}	X	X
		ysis utilizing High Perform	ance Liquid Chroma	tography with U\	//PDA detection (HPL	C-UV/PDA). All cannab	inoids have an LOQ	of 0.01%.	X	\times	$\langle \rangle$	

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Director

State License # n/a ISO Accreditation # 17025:2017

Surten

07/14/23

Signed On

Labstat

2ml Disposable N/A Matrix : Infused Product

PASSED

Certificate of Analysis

Hemp Rolls

Chattanooga, TN, 37432, US Telephone: (865)-964-9818 Email: info@hemp-rolls.com Sample : KN30713002-001 Harvest/Lot ID: 070723A Batch# : 070723A Sampled : 07/10/23 Ordered : 07/10/23

Sample Size Received : 15 gram Completed : 07/14/23 Expires: 07/14/24 Page 2 of 5

PASSED

Pesticides

Pesticide	LOD	Units	Action Level	Pass/Fail	Resul
ABAMECTIN B1A	0.012	ppm	0.1	PASS	ND
ACEPHATE	0.008	ppm	0.1	PASS	ND
ACEQUINOCYL	0.038	ppm	0.1	PASS	ND
ACETAMIPRID	0.009	ppm	0.1	PASS	ND
ALDICARB	0.009	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.013	ppm	0.1	PASS	ND
BIFENAZATE	0.028	ppm	0.1	PASS	ND
BIFENTHRIN	0.047	ppm	0.1	PASS	ND
BOSCALID	0.007	ppm	0.1	PASS	ND
CARBARYL	0.015	ppm	0.5	PASS	ND
CARBOFURAN	0.008	ppm	0.1	PASS	ND
CHLORANTRANILIPROLE	0.012	ppm	3	PASS	ND
CHLORMEQUAT CHLORIDE	0.008	ppm	1	PASS	ND
CHLORPYRIFOS	0.014		0.1	PASS	ND
CLOFENTEZINE	0.006		0.2	PASS	ND
COUMAPHOS	0.009		0.1	PASS	ND
DAMINOZIDE	0.006	ppm	0.1	PASS	ND
DIAZANON	0.006		0.1	PASS	ND
DICHLORVOS	0.014	ppm	0.1	PASS	ND
DIMETHOATE	0.009		0.1	PASS	ND
DIMETHOMORPH	0.009	ppm	3	PASS	ND
THOPROPHOS	0.007		0.1	PASS	ND
ETOFENPROX	0.009		0.1	PASS	ND
ETOXAZOLE	0.007		1.5	PASS	ND
FENHEXAMID	0.005		3	PASS	ND
FENOXYCARB	0.007		0.1	PASS	ND
FENPYROXIMATE	0.006	1.1.	2	PASS	ND
FIPRONIL	0.008		0.1	PASS	ND
FLONICAMID	0.014		2	PASS	ND
FLUDIOXONIL	0.011		3	PASS	ND
HEXYTHIAZOX	0.009		2	PASS	ND
MAZALIL	0.01	ppm	0.1	PASS	ND
MIDACLOPRID	0.005	1.1.	3	PASS	ND
KRESOXIM-METHYL	0.005	ppm	1	PASS	ND
MALATHION	0.001		2	PASS	ND
MALATHION	0.005		3	PASS	ND
METHIOCARB	0.008	1.1.	0.1	PASS	ND
METHIOCARB	0.008		0.1	PASS	ND
METHOMYL	0.009		0.1	PASS	ND
			3	PASS	ND
MYCLOBUTANIL	0.006		3	PASS	ND
NALED	0.023	1.1.	0.5	PASS	ND
DXAMYL		1.1.			
PACLOBUTRAZOL	0.007	T. P.	0.1	PASS	ND ND
PERMETHRINS	0.008		-		
PHOSMET	0.009		0.2	PASS	ND
PIPERONYL BUTOXIDE	0.006	nnm	3		ND

Pesticide		LOD	Units	Action Level	Pass/Fail	Result
PRALLETHRIN		0.008	ppm	0.4	PASS	ND
PROPICONAZOLE		0.007	ppm	1	PASS	ND
PROPOXUR		0.008	ppm	0.1	PASS	ND
PYRETHRINS		0.002	ppm	1	PASS	ND
PYRIDABEN		0.007	ppm	3	PASS	ND
SPINETORAM		0.004	ppm	3	PASS	ND
SPIROMESIFEN		0.009	ppm	3	PASS	ND
SPIROTETRAMAT		0.009	ppm	0.1	PASS	ND
SPIROXAMINE		0.006	ppm	0.1	PASS	ND
TEBUCONAZOLE		0.009	ppm	0.1	PASS	ND
THIACLOPRID		0.008	ppm	0.1	PASS	ND
THIAMETHOXAM		0.009	ppm	0.5	PASS	ND
TOTAL SPINOSAD		0.009	ppm	0.1	PASS	ND
TRIFLOXYSTROBIN		0.009	ppm	0.1	PASS	ND
Analyzed by: 2803	Weight: 1.0518g		Extraction date: 07/14/23 10:20:49		Extracted 2803	by:
Analysis Method : SOP Analytical Batch : KN00 Instrument Used : E-SH	03958PES	Re		:07/14/23 12:: 07/14/23 10:18		

Running on : N/A

Dilution : 0.01 Reagent : 010523.R11; 010523.R13; 030723.R19; 071023.R03; 062023.R01; 122322.R26; 101722.04; 011723.03; 032221.01 Communication : 0.0110210; K1202521; 02/04/01; 01420256; 051760; 001122.059; 011214524.D; 020146;

03222101 Consumables : 302110210; K130252]; 22/04/01; 01422036; 251760; 201123-058; 211214634-D; 239146; 947B9291.271; GD220003; 1350331; 1300.062 Pipette : E-VWR-116; E-VWR-117; E-VWR-118; E-VWR-119

Testing for agricultural agents is performed utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry. *Based on FL action limits.

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Director

State License # n/a ISO Accreditation # 17025:2017

Suster

07/14/23

Signed On

2ml Disposable N/A

Matrix : Infused Product

PASSED

PASSED

Certificate of Analysis

Hemp Rolls

Chattanooga, TN, 37432, US. Telephone: (865)-964-9818. Email: info@hemp-rolls.com Sample : KN30713002-001 Harvest/Lot ID: 070723A Batch#:070723A Sampled : 07/10/23 Ordered : 07/10/23

Sample Size Received : 15 gram Completed : 07/14/23 Expires: 07/14/24 Page 3 of 5

ñ

Residual Solvents

100 100 20 0.2 32 100 10 0.6	ppm ppm ppm ppm ppm ppm ppm	5000 5000 250 5 750 5000	PASS PASS PASS PASS PASS	ND ND ND ND
20 0.2 32 100 10	ppm ppm ppm ppm	250 5 750	PASS PASS PASS	ND ND
0.2 32 100 10	ppm ppm ppm	5 750	PASS	ND
32 100 10	ppm ppm ppm	750	PASS	
100 10	ppm ppm			ND
10		5000		ND
	ppm	5000	PASS	ND
0.6		500	PASS	ND
	ppm	8	PASS	ND
40	ppm	750	PASS	ND
25	ppm	500	PASS	ND
20	ppm	60	PASS	ND
2	ppm	125	PASS	ND
10	ppm	250	PASS	ND
8.3	ppm	400	PASS	ND
0.04	ppm	2	PASS	ND
0.03	ppm	1	PASS	ND
0.05	ppm	2	PASS	ND
53	ppm	5000	PASS	ND
0.5	ppm	25	PASS	ND
5	ppm	150	PASS	ND
15	ppm	150	PASS	ND
Weight: NA	Extraction da N/A	ite:	Extracted 138	by:
	20 2 10 8.3 0.04 0.03 0.05 53 0.5 5 5 15 Weight:	20 ppm 2 ppm 10 ppm 8.3 ppm 0.04 ppm 0.03 ppm 0.05 ppm 5.3 ppm 0.5 ppm 5 ppm 15 ppm Weight: Extraction date NA N/A	20 ppm 60 2 ppm 125 10 ppm 250 8.3 ppm 400 0.04 ppm 2 0.03 ppm 1 0.05 ppm 2 53 ppm 250 5 ppm 1000 0.5 ppm 250 5 ppm 150 Weight: Extraction date: 5000	20 ppm 60 PASS 2 ppm 125 PASS 10 ppm 250 PASS 10 ppm 250 PASS 8.3 ppm 400 PASS 0.04 ppm 2 PASS 0.03 ppm 1 PASS 0.05 ppm 2 PASS 0.05 ppm 2 PASS 0.5 ppm 25 PASS 0.5 ppm 150 PASS 15 ppm 150 PASS Weight: Extraction date: Extracted 138 Reviewed on : 07/14/23 17:21:28

Consumables : R2017.167; G201.167

Pipette : N/A

Residual solvents analysis is performed using Gas Chromatography / Mass Spectrometry. *Based on FL action limits.

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Director

State License # n/a ISO Accreditation # 17025:2017

Suitor

07/14/23

Signed On

Microbial

Weight:

THE-052; E-THE-053; E-THE-054; E-BIO-188

1.0347g

Analysis Method : SOP.T.40.056C, SOP.T.40.041 LOD is 1 CFU

LOD

Extraction date:

Reagent : 101822.09; 061623.02; 121322.01; 042723.02 Consumables : 22/04/01; 251773; 242429; 2DAX30621; P7528255; 41218-146C4-146C;

263989; 93825; 007109; n/a; 247040; 0150210 Pipette : E-THE-045; E-THE-046; E-THE-047; E-THE-048; E-THE-049; E-THE-050; E-THE-051; E-

07/13/23 09:49:42

Units

10427 Cogdill Road, Suite 500 Knoxville, TN, 37932, US DEA Number: RC0639128

Labstat 2ml Disposable

Matrix : Infused Product

N/A

PASSED

Certificate of Analysis

Result

Not Present

Not Present

Not Present

Not Present

Not Present

Not Present

Reviewed On : 07/14/23 11:28:20

Batch Date : 07/13/23 09:12:17

Hemp Rolls

Analyte

SPP

Chattanooga, TN, 37432, US Telephone: (865) 964-9818 Email: info@hemp-rolls.com

ESCHERICHIA COLI SHIGELLA

SALMONELLA SPECIFIC GENE

ASPERGILLUS FLAVUS

ASPERGILLUS NIGER

Analyzed by:

Running on : N/A

Dilution : N/A

2805

ASPERGILLUS TERREUS

ASPERGILLUS FUMIGATUS

Analytical Batch : KN003954MIC

Instrument Used : F-HEW-069

Sample : KN30713002-001 Harvest/Lot ID: 070723A Batch#:070723A Sampled : 07/10/23 Ordered : 07/10/23

Sample Size Received : 15 gram Completed : 07/14/23 Expires: 07/14/24 Page 4 of 5

PASSED	÷Ç÷	Mycoto	xins			I	PAS	SED		
Pass / Action Fail Level				LOD	Units	Result	Pass / Fail	Action Level		
PASS	AFLATOXIN G2			0.0016	ppm	ND	PASS	0.02		
	AFLATOXIN G1			0.0012	ppm	ND	PASS	0.02		
PASS	AFLATOXIN B2			0.0012	ppm	ND	PASS	0.02		
PASS	AFLATOXIN B1			0.0012	ppm	ND	PASS	0.02		
PASS	OCHRATOXIN A	+		0.002	ppm	ND	PASS	0.02		
PASS	TOTAL MYCOTO	XINS		0.002	ppm	ND	PASS	0.02		
PASS Extracted by:	Analyzed by: 2803, 3050	Weight: 1.0518g					Extracted by: 2803			
2805	Analysis Method :									
1:28:20	Analytical Batch : Instrument Used : Running on : N/A	KN003959MYC		Reviewed		/14/23 17:2 4/23 10:24				

Dilution : 0.01 Reagent : 010523.R11; 010523.R13; 030723.R19; 071023.R03; 062023.R01; 122322.R26;

101722.04; 011723.03; 032221.01 Consumables : 302110210; K130252J; 22/04/01; 01422036; 251760; 201123-058; 211214634-D; 239146; 947B9291.271; GD220003; 1350331; 1300.062 Pipette : E-VWR-116; E-VWR-117; E-VWR-118; E-VWR-119

Aflatoxins B1, B2, G1, G2, and Ochratoxins Mycrotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry. *Based on FL action limits.

Arrobiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method onsisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which	 Aflatoxins B1, B2 Triple-Quadrupol 						iquid Chror.	natography	with
avoids purification. With an LOD of 1cfu, if a pathogenic E Coli, Salmonella, A fumigatus, A flavus, A niger, or A terreus is detected in 1g of a sample, the sample fails the microbiological-impurity testing.	[Hg]	Неа	vy	Metal	s			PAS	SED
	Metal	/	1	1/1/	LOD	Units	Result	Pass / Fail	Action Level
	ARSENIC-AS				0.02	ppm	ND	PASS	0.2
	CADMIUM-CD				0.02	ppm	ND	PASS	0.2
	MERCURY-HG	i			0.02	ppm	ND	PASS	0.2
	LEAD-PB				0.02	ppm	ND	PASS	0.5
	Analyzed by: 2837, 138		ight: 631g	Extractio 07/13/23				Extracted 2837	by:
	Analysis Metho Analytical Batch Instrument Use Running on : N/	h:KN00395 d:E-AGI-08	5HEA	R	leviewe	ed On : 07/ ate : 07/13			
	Dilution : N/A Reagent : 0511 061523.R03; 05 031623.R02; 04	51523.R39;							

Consumables: 257747; 829C6-829B; 221200; A260422A Pipette: E-EPP-081; E-EPP-082

Heavy Metals analysis is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometer) which can screen down to single digit ppb concentrations. LOQ is 0.04 ppm for all metals. *Based on FL action

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=in-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Director

State License # n/a ISO Accreditation # 17025:2017

07/14/23

Signed On

Labstat

2ml Disposable N/A

PASSED

Certificate of Analysis

Reviewed On : 07/13/23 16:16:16

Batch Date: 06/20/23 09:38:43

Hemp Rolls

Chattanooga, TN, 37432, US **Telephone:** (865)964-9818 **Email:** info@hemp-rolls.com Sample : KN30713002-001 Harvest/Lot ID: 070723A Batch# : 070723A Sampled : 07/10/23 Ordered : 07/10/23

PASSED

Sample Size Received : 15 gram Completed : 07/14/23 Expires: 07/14/24

Filth/Foreign Material

Analyte Filth and Forei	gn Material	LOD 1	Units detect/g	Result ND	P/F PASS	Action Level 3
Analyzed by:	Weight:	Extrac	tion date:		Extr	acted by:
2805	0.5413g	07/13	/23 09:51:06	5	280	5

Analysis Method : SOP.T.40.090 Analytical Batch : KN003889FIL Instrument Used : E-AMS-138 Running on : N/A

Dilution : N/A Reagent : N/A Consumables : N/A Pipette : N/A

This includes but is not limited to hair, insects, feces, packaging contaminants, and manufacturing waste and by-products. A SW-2T13 Stereo Microscope is use for inspection.

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

State License # n/a ISO Accreditation # 17025:2017

Surter Signature

07/14/23

Signed On